Вариант 1

Вопрос 1. Какой процесс называют осмосом?

<u>Задача 1.</u> Определите концентрацию раствора уксусной кислоты, если на титрование 2 мл данного раствора потребовалось 17,2 мл раствора NaOH с концентрацией 0,1 моль/л.

<u>Задача 2</u>. Рассчитайте молярную массу электролита, если температура кипения раствора $T_K = 101,55^{0}$ С, масса вещества 55,5 г, объем воды 500 мл (изотонический коэффициент i = 2,98, эбулиоскопическая константа воды $K_{96} = 0,52$).

Вариант 2

Bonpoc 1. Сформулируйте закон Рауля. Приведите его математическое выражение.

<u>Задача 1.</u> Рассчитайте, сколько грамм глюкозы необходимо взять для приготовления 0,5 л раствора с концентрацией 0,3 моль/л.

 $3adaчa\ 2$. Рассчитайте осмотическое давление (в Πa) приготовленного раствора глюкозы с концентрацией 0,3 моль/л.

Вариант 3

Bonpoc 1. Какие свойства растворов называют коллигативными?

<u>Задача 1.</u> Рассчитайте %-ную концентрацию раствора NaCl, если его молярная концентрация равна 0,15 моль/л.

<u>Задача 2</u>. Рассчитайте температуру кипения 2-х кг водного раствора, содержащего 180г фруктозы. Эбулиоскопическая константа воды $K_{36} = 0,52$.

Вариант 4

Вопрос 1. Дайте определение осмотического давления.

3адача 1. Какова молярная концентрация раствора, содержащего 21,6 г FeBr₂ в 2 л раствора.

<u>Задача 2</u>. Вычислите температуру замерзания (в 0 С и K) 40%-ного водного раствора этанола. Криоскопическая константа воды $K_{KP} = 1,86$.

Вариант 5

Bonpoc 1. Какие системы называются растворами?

<u>Задача 1.</u> Рассчитайте концентрацию раствора HCl (моль/л), если на титрование 15 мл этого раствора потребовалось 3,5 мл раствора NaOH с концентрацией 2 моль/л.

 $3adaчa\ 2$. Рассчитайте осмотическое давление (в Па) водного раствора хлорида кальция с концентрацией 0.15 моль/л (T = 27^{0} C, i = 2.95).

Вариант 6

Вопрос 1. Сформулируйте закон Дальтона. Приведите его математическое выражение.

<u>Задача 1.</u> Сколько грамм хлорида натрия надо взять для приготовления 0,2 л 0,15 М раствора NaCl?

<u>Задача</u> 2. Вычислите моляльную концентрацию и массу сахарозы в водном растворе, температура кипения которого $100,25^{0}$ С (эбулиоскопическая константа воды $K_{ЭБ} = 0,52$).

Вариант 7

Bonpoc 1. Чему равно осмотическое давление плазмы крови? Какие растворы называют изо-, гипо- и гипертоническими?

<u>Задача 1.</u> Рассчитайте %-ную концентрацию раствора сахарозы, если его молярная концентрация равна 0,2 моль/л.

<u>Задача 2</u>. Рассчитайте температуру кипения 1,5 M раствора хлорида натрия (эбулиоскопическая константа $K_{96} = 0,52$, изотонический коэффициент 1,98).

Вариант 8

Bonpoc 1. Чем идеальные растворы отличаются от реальных? Приведите примеры.

Задача 1. Какова молярная концентрация 12%-ного раствора этилового спирта?

<u>Задача 2</u>. Рассчитайте молярную массу неэлектролита в водном растворе с концентрацией 450 г/кг на основе эбулиометрических измерений: температура кипения раствора $T_{K\ p-pa}=101,3^0,$ эбулиоскопическая константа воды $K_{96}=0,52.$

Вариант 9

Bonpoc 1. Какой процесс называют осмосом?

<u>Задача 1.</u> Определите концентрацию раствора уксусной кислоты, если на титрование 2 мл данного раствора потребовалось 11,2 мл раствора NaOH с концентрацией 0,15 моль/л.

 $3a\partial a ua$ 2. Вычислите осмотическое давление (в атм) водного раствора глюкозы с концентрацией 270 моль/м³ при температуре 30^{0} C.

Вариант 10

Bonpoc 1. Перечислите свойства растворов, относящиеся к коллигативным.

Задача 1. Рассчитайте, сколько грамм хлорида кальция необходимо взять для приготовления 0,4 л раствора с концентрацией 1,5 моль/л.

<u>Задача 2</u>. Рассчитайте температуру замерзания водного раствора фруктозы с концентрацией 24,5г/кг, если криоскопическая константа воды 1,86.

Вариант 11

Вопрос 1. Дайте определение осмотического давления.

<u>Задача 1.</u> Какова молярная концентрация раствора, содержащего 36,2 г иодида калия в 400 мл раствора.

<u>Задача 2</u>. Вычислите массу сахарозы (г), растворенной в 0,5 л воды, если температура кипения полученного раствора на $0,4^{0}$ С выше температуры кипения воды ($M_{cax}=342$ г/моль, $K_{96}=0,52$).

Вариант 12

Bonpoc 1. Какие способы выражения состава раствора вы знаете?

<u>Задача 1.</u> Рассчитайте %-ную концентрацию раствора уксусной кислоты, если его молярная концентрация равна 0.25 моль/л.

<u>Задача</u> 2. Рассчитайте осмотическое давление (в атм) раствора хлорида натрия с концентрацией 250 моль/м^3 при температуре 37^0 С (изотонический коэффициент 1,96).

Вариант 13

Bonpoc 1. Какие системы называются растворами?

Задача 1. Рассчитайте концентрацию раствора HCl (моль/л), если на титрование 3 мл этого раствора потребовалось 13,7 мл раствора NaOH с концентрацией 0,2 моль/л.

<u>Задача 2</u>. Рассчитайте молярную массу электролита, если температура кипения раствора, полученного растворением 20 г вещества в 250 мл воды, равна $101,1^{0}$ С (изотонический коэффициент 1,97, эбулиоскопическая константа воды 0,52).

Вариант 14

Bonpoc 1. В чем отличие растворов электролитов и неэлектролитов? Чем оно объясняется? Приведите примеры.

<u>Задача 1.</u> Рассчитайте, сколько грамм сахарозы необходимо взять для приготовления 1,5 л раствора с концентрацией 0,8 моль/л.

<u>Задача 2</u>. Чему равна концентрация (моль/л) хлорида кальция в водном растворе, если его осмотическое давление при 20^{0} C равно 7.2×10^{5} Па (изотонический коэффициент 2,94).

Вариант 15

Bonpoc 1. Дайте определение степени диссоциации? Как ее рассчитать?

<u>Задача 1.</u> Рассчитайте %-ную концентрацию раствора фруктозы, если его молярная концентрация равна 0.25 моль/л.

<u>Задача 2</u>. Вычислите температуру кипения водного раствора пилокарпина гидрохлорида (М=244,5 г/моль) с концентрацией 80 г/кг. Эбулиоскопическая константа воды 0,52.

Вариант 16

Bonpoc 1. Чем идеальные растворы отличаются от реальных? Приведите примеры.

<u>Задача 1.</u> Какова молярная концентрация раствора, содержащего 15 г сахарозы в 200 мл раствора.

<u>Задача 2</u>. Определите концентрацию (в моль/м³) хлорида натрия в водном растворе, если его осмотическое давление при 25° C равно 5,4 атм (изотонический коэффициент 1,95).

Титриметрическое определение содержания уксусной кислоты в водном растворе.

<u>Цель работы</u>: определение содержания уксусной кислоты в анализируемом растворе. <u>Целевые задачи</u>: овладение методом количественного анализа химических веществ на примере кислотно-основного титрования уксусной кислоты гидроксидом натрия, расчет содержания уксусной кислоты в водном растворе.

Оснащение рабочего места.

Бюретки емкостью 25 мл

Пипетки емкостью 1 мл

Конические колбы емкостью 25 мл

Исследуемые растворы уксусной кислоты

Стандартный раствор NaOH (0,1 н.)

Индикатор фенолфталеин

Примечание: определение проводят методом прямого титрования раствора слабой кислоты стандартным раствором сильного основания. Титрование основано на реакции:

$$CH_3COOH + NaOH \leftrightarrow CH_3COONa + H_2O$$

При титровании слабых кислот раствор в точке эквивалентности имеет щелочную реакцию вследствие гидролиза образующейся соли. Для определения конечной точки титрования применяют индикатор фенолфталеин.

Проведение опыта.

- 1. В лаборантской получить необходимую посуду и реактивы.
- 2. Из флакона с уксусной кислотой отобрать аликвоту 1 мл при помощи пипетки и перенести в коническую колбу для титрования.
- 3. В туже колбу добавить 2-3 капли фенолфталеина.
- 4. Титровать стандартным раствором NaOH (0,1 н.) до появления бледно-розовой окраски, не исчезающей в течение 30 секунд.
- 5. Записать объем раствора NaOH, затраченный на титрование аликвотной части.
- 6. Повторить титрование еще 2 раза.
- 7. Определить средний объем NaOH, пошедший на титрование исследуемого раствора кислоты.
- 8. Рассчитать концентрацию уксусной кислоты в исследуемом растворе по закону эквивалентов:

$$C = \frac{C_{\text{NaOH}}V_{\text{NaOH}}}{V_{\text{аликвоты}}}$$
 ,

где V_{NaOH} - объём раствора NaOH, пошедший на титрование (среднее арифметическое из результатов трех титрований), C_{NaOH} - концентрация NaOH (0,1 н.), $V_{\text{аликвоты}}$ - объём раствора уксусной кислоты, взятый для титрования (в данном случае -1 мл).

9. Полученные данные внести в таблицу:

№	Объем исследуемого раствора	Объем титранта NaOH (0,1 н.)		Найденная концентрация СН₃СООН в		Найденная масса СН₃СООН в заданном объеме	
	CH₃COOH			исследуемом растворе			
1	$V_1 = 1 \text{мл}$	$V_1 =$	МЛ				
2	$V_2 = 1 \text{мл}$	$V_2 =$	ΜЛ	C =	н.	m =	Γ
3	$V_3 = 1 \text{мл}$	$V_3 =$	МЛ				
		$V_{cn} =$	МЛ				

10. Рассчитать массу уксусной кислоты в контрольном растворе объемом V_{p-pa} по уравнению:

$$C_{\text{NaOH}} \times V_{\text{NaOH}} \times M_{\text{9kB CH3COOH}} \qquad V_{\text{p-pa}} \\ m_{\text{CH3COOH}} = \frac{}{1000} \times \frac{}{V_{\text{AUMKBOTM}}} \; ,$$

где $M_{\text{экв CH3COOH}}$ – молярная масса эквивалента CH_3COOH :

$$M_{_{^{9KB}}CH3COOH} = f_{_{^{9KB}}} \times M_{CH3COOH}$$

11. Сформулировать выводы.